NetsNemLog-in

NL3 Broker implementation Guide-
lines

Nets Internal

Contents

1

8

The Purpose and Target Audience of the DOCUMENT..........covviiiiiiiiii e 5
1.1 DOCUMENE CONVENTIONSuietieiit ettt et ettt e e et e et et e et e et e a et b e e ean e e ean e eanaees 5
1.2 ADDIBVIALIONS ...t 5

10X (2= Lo o TN 6

(LYoo [T Y11 o] o DN TP TP PPRUPTPN 6

Broker INTegration — OVEIVIEWcue ittt et et et e e et e e e e en e 8

BroKer EXampPle COOe. ..ot e 10

Broker Integration —detailS...........oiuiiiii e 10
0 R ©70]1] 0 o] 4IRS (=] o S S PP PPRPPP 11

6.1.1 Step 1: Prepare Signing Payloadc..oiuiiiiiii e 11

6.1.2 Step 2: Create SigNiNg SESSIONcuuuiie et ie e et re e e et et e e ee e anaeans 12

6.1.3 Step 3: Present document and security code to end USEr...........cccveevviiniiiiiineinnnnnnns 13

6.1.4 Step 4: Authenticate end user and create OIOSAML ASSErtion..........coceevveieveieennennnns 13

6.1.5 Step 5:1SSUE CertifiCALE .. .itiiee e e 13

6.1.6 Step 6: Calculate SIgNature VAIUE.c..ieiiii e 13
T = 0| S IR T [T= 1 =P 14

6.2.1 Step 7: Create PAJES LTV SIGNAIUIE ... ccviiiiii et ee e e e e e eaneanees 14

6.2.2 Step 8: Create PAJES LTA SIGNAIUIE ... cvvii e e e e e e eaneenees 15

6.2.3 Step 9:Validate SIgNaLUIEccuiiee e e e et e et e e 17
TR T 0o | IS IR T [T= (1 =P 17

6.3.1 Step 7: Create XAIES LTV SIGNAIUIE ... c.uii et ee e e e e e eaneanees 17

6.3.2 Step 8: Create XAIES LTA SIGNAIUIE ... ovvii e e e e e eaaeanees 17

6.3.3 Step 9:Validate SIGNaLUIEccuiiee i e et e et e e 18

Signing Formats and Data MOUElS........c..oiiiiiiiie e 18
7.1 SIQNEIUrE PAramELEISeuieiiii e e e 18
7.2 SIgNING PAYIOAU 19
7.3 SIQNING ClENE EITON. ettt ettt ettt e et e e e ea e enaaannas 19

Y AN 1Y I N C=To =1 1o] o 19
8.1 SAML ASSErtiON rEQUITEIMENTSuitiii ittt et e e et e e e e et et et e e e et e e e ea e et e anaaannas 21
8.2 SUD T . e 21

Side 1 af41

B.2.1 NAMEID ... 21
8.2.2 SUDJECTCOMIIMALIONiti e iteie e e e e e e e e et e e e e e eaneeen 21

S TG T @] o 1o 22
8.3.1 AUAIENCERESIIICHION. ..ottt 22

8.4 AHNIDULESIAIEMENL. ... it 22

. Tt S oY= A =T] o o 22
S I o Y- P 23
8.4.3 CertificalePOlICYQUAITIEN.ccuieiee e 23
8.4.4 ANONYMIZEASIGNEL ... e et e e e e 23
8.4.5 CertificateHolderldentifier...........oooeu i 24
8.4.6 CertificateSSNPersiSteNCeLEVElcoouiiiii e 24
8.4.7 Certificate SUDJECIDN attribULES.c.ueirii i 24

LS B oo Lo 1o T O PSPPSR P 26
10 Response codes and error handling........c...oceu i 26
11 SECUNTY GUIABINES. ..ot e e e e e e e e e e e enas 27
12 APPENdiX — BrOKEE AP ...t 27
D I O U1 =T o 407 1) o PP 27
12.1.2 CommoNn REQUEST PArameterscuiiuiiiiiiiii e 28
02 Y T | 1 o Y 28
12.2.1 begin-SignatUreFIOW e 28
12.2.2 1SSUE-CRIIICAIE. .. it ittt e e e e e 28
12.2.3 CreatePad @S-Vo e 29
12.2.4 Createad@S-Ila.oiuniii e 29
12.2.5 Create-Xad S IV .. e 30
12.2.6 Create-XAOES-Ita.t et 30
12.2.7 SESSION-CIEALION-KEY . JS. .. et ettt et e e e eees 31
12.3 SIgnING APIMOGEIS. et e 32
12.3.1 BeginSignatureFIoOWREQUESEiuiiiiiii e 32
12.3.2 BeginSignatureFIoOWRESPOMNSE.iiiiiiieiiie e 32
12.3.3 ISSUECERIfICAEREGUESTveeit e e e e e e en s 32
12.3.4 ISSUECERIf ICAERESPOMSE ... eu it eee ittt et e e e e e e e e eenas 32
12.3.5 CreatePadeSLIVREQUESL.ccviiiiiiieie e 32
12.3.6 CreatePadeSLiVRESPOMNSEccvii e 33
12.3.7 CreatePadeSLIaREQUESTccuiie i 33
12.3.8 CreatePadeSLiaReSPONSE.cu it 33

Side 2 af41

12.3.9 CreateXadeSLIVREQUESL.ccuiii i 33

12.3.10 CreateXadeSLtVRESPONSE. i eiie e et e e e e e e e an s 33
12.3.11 CreateXadesSLtaREgUESTiie i e 33
12.3.12 CreateXadeSLIaRESPONSE. iiu ittt e ea e 34
12.4 SIgner forWarder APoou e e 34
I S R Yo 1= 0 1T Vo Y 34
12.4.2 SAP PrIOWOCOL. ...ttt e e et ettt a e eans 35

G T AN o oY= g o [l = o Y 39
14 Appendix — Broker SAML ASSEItioNocuuiiiiiiie e e 39
15 AppendiXx = SAP AP ULITITIES. e 40
15.1 Code example —formatting saml (Sad) @SSEMIONc.vvuieiiiii i 40

Side 3af41

Version | Change Date

0.1 Draft 09-07-2020
0.2 Internal review and update 06-11-2020
1.0 Version updated as part of release 12-11-2020
1.0.1 Updated based on review from Digst 11-12-2020
1.0.2 Support for multiple 1dPs 04-01-2020
1.0.3 Added nemlogin-broker-mock to SignSDK 09-03-2021
1.04 Updated OIOSAML Attribute name format. Updated based | 11-03-2021

on review from Digst

References

NL-SP-IMPL Signature SP Implementation Guideline, NemLog-in
NL3 Signature SP Implementation Guideline.pdf

NL-SIG-PRO- AdES Signature Profile, NemLog-in.

FILE NL3 AJES Signature Format. pdf

SIGNSDK The Java- or .Net-based NemLog-In SignSDK library used for first stage of the
signing process.

OIOSAML OIOSAML Web SSO Profile 3.0.1 is a SAML implementation profile governed by
the Danish Agency for Digitisation. The specification is available here:

elDAS Regulation (EU) No 910/2014 of the European Parliament and of the Council of
23 July 2014 on electronic identification and trust services for electronic transac-
tions in the internal market and repealing Directive 1999/93/EC. Available here:

PDF ISO 32000-1, Document management — Portable document format — Part 1: PDF
1.7. Available here:

PAJES ETSIEN 319 142-1: AJES digital signatures; Part 1: Building blocks and PAJES
baseline signatures, ETSI ESI. Available here:

XAdES ETSIEN 319 132-1: XAdES digital signatures; Part 1: Building blocks and XA-

dES baseline signature, ETSI ESI. Available here:

Side 4 af41

NSIS National Standard for Identity Assurance Levels (NSIS), Version 2.0.1, Digitalis-

ertingsstyrelsen, 2019. Available here:

1 ThePurposeand Target Audience of the Document

This document is part of the NemLog-in Broker Package. The purpose of this document is to provide
the technical documentation required to develop a signing client that integrates with the NemLog-in

Signing backend.

This document is aimed at developers and architects.

1.1 Document Conventions
Code examples and XML snippets are written using a fixed width font. References are marked in

square-brackets, e.g. [OIOSAML].

1.2 Abbreviations

Abbreviation

Description

SP Service Provider. The entity delivering the documents to be
signed. It is important to distinguish between NemLog-in SPs and
the Broker SPs. In this document SP is used as a term for the
Brokers SPs.

Signer End user identity performing the actual document signing. This

can be a person or an employee signing on behalf of an organiza-
tion

SD Document Format

Signer's document input format (HTML, XML, Text or PDF)

SD

Signer's document. The original document that is input to the sign-
ing process. SDis in a valid Document Format.

Signature Format

The format (XAdES, PAdES) of the DTBS payload to be signed.

Signature Signatures is produced for an individual. F.ex. a person or an em-
ployee

Seal Seals is a signature produced for a legal identity, f.ex. a business
or organization.

DTBS Data To Be Signed. The transformed document in a valid Signa-
ture Format that is to be signed

SDO Signed Data Object. The signed document XAdES or PAJES

Side5af41

https://digst.dk/media/22920/nsis-engelsk-version-201_final.pdf

JWS JSON Web Signature

PAdES PDF Advanced Electronic Signatures

XAdES XML Advanced Electronic Signature

ASN.1 Abstract Syntax Notation 1

AdES Advanced Electronic Signature

CMS Cryptographic Message Syntax. For PDF a CMS may contain a
AdES.

OCSP Online Certificate Status Provider

QSCD A Qualified Secure Signature Generation, part of the NemLog-In
Signing backend.

2 Motivation

The NemLog-in signature client is aimed for SP’s to quicly integrate signature facilities using NemLog-
in as an identity provider.

For Brokers who use other identity schemes, the NemLog-in infrastructure supports them building their
own signature client using the NemLog-in backend systems for certificate issuing and signature gener-
ation.

Now, as the signature flow used in NemLog-in, ensures that the document to be signed remains within
the Brokers environment, the integration is quite technical as the Broker must implement part of the
Advanced formatting into the final signature object. Brokers p ursuing this road should consult the ref-
erences describing the signature formats.

3 Introduction

This document serves as the technical documentation for brokers on how to implement a Signing Cli-
ent using the NemLog-in Broker API. It supplements the document [NL-SP-IMPL] aimed for Service
Providers using the NemLog-in signature client by providing details specific for using the Broker API.
Anyone who wishes to become a Broker must be registered with and be approved by NemLog-In.

Part of the requirements for Brokers to implement a Signing Client is to use the SignSDK [SIGNSDK]
to prepare a Signing Payload consisting of the Data To Be Signed (DTBS) and JWS-sealed signature
parameters.

The SignSDK is documented in detail in chapter 4 of the Service Provider implementation guidelines

[NL-SP-IMPL] for NemLog-in SPs.

Side 6 af41

https://tools.ietf.org/html/rfc7515

The NemLog-in Broker API supports the creation of PAJES-B-LTA [PAJES] and XAdES-B-LTA [XA-
dES] signatures and seals based on the input formats HTML, Text, XML and PDF. The signature for-
mats is described in [NL-SP-IMPL] chapter 3.

In this document, signature will be used at the general term for both signatures and seals, unless it is
important for the implementation details.

A Broker mustimplement the Broker Signing Client and Broker IdP components shown be
low. Depending on the Broker’s choice of technology they can be implemented as one component.
The SPs integrate with the Broker Signing Client. The details of the integration between the
Broker and their SPs is up to the Broker.

A Broker must be registered to NemLog-in and have a valid Broker’s entity ID and VOCES certificate.
Once the registration and issuing is done, NemLog-in will use the entity ID and certificate to authorize
the Broker and verify the SAML Assertions.

cmp Broker Signing l:ompunerlts___J

Eroker protocol _
- ey

|
Broker Authentication
protocol

=< |58 ==

| S =< use > ———| |

g ——————-

|
L W
Broker Signer Broker Signing Broker (IdP)
Forwarder Proxy Client
i !
Cryptomathic protocol RESTAPI

=< |5 == == use ==
" 1

The Broker signing process involves the following actors:

e Broker Signing Client. The Signing Client implemented by the Broker capable of creating PAJES
and XAdES signatures.

Side 7 af41

Broker (IdP). The Broker (IdP) must be capable of authenticating end users and to create valid
OIOSAML Assertions. See ‘8 SAML Integration’.

Broker Signer Forwarder Proxy. The Broker must implement a Signer Forwarder Proxy that ena-
bles the requests to Signer Forwarder API from the Broker Signing Client to be proxied through the
Brokers backend.

Signer. The end entity performing the signing of the Signers Document (SD).

SignSDK: A Java- or .Net-based NemLog-In SignSDK library used for first stage of signing. The
library is documented in details in [NL-SP-IMPL] chapter 4. The SignSDK creates the Signing Pay-
load required to initiate the signing process using the NemLog-in backend APIs.

Signing API. Part of the NemLog-in backend and responsible for creating the AdES signatures.
Signer forwarder API. Part of the NemLog-in backend and responsible for providing the signature
value using a short term qualified certificate issued to the Signer.

NemLog-in backend. The NemLog-in backend components required to create the signature.

4 Broker Integration—overview

Signing a document involves a series of steps. The following is a high level description of the required
steps. See ‘6 Broker Integration —’ for a detailed description of each step.

The supported types of the Signer's Documents (SD) to be signed — hereafter denoted as SD Docu-
ment Format — are either HTML, Text, XML or PDF. The resulting output of the signing process can
be either PAJES or XAdES. All combinations are supported by the SignSDK.

Brokers are obligated to validate that any SD only contains content permitted by the whitelists defined
in [NL-SP-IMPL] appendix C & D.

Step 1: Prepare Signing Payload.

Before any document can be signed, the Signing Payload consisting of JWS-sealed Signature Pa-
rameters and Data To Be Signed (DTBS) must be initialized using the SignSDK. Please refer [NL-
SP-IMPL] for details.

Step 2: Create Signing Session.

Before presenting the document for the end user, a signing session must be initiated by sending
the JWS-sealed Signature Parameters to the backend using the Signing API. If the backend is able
to validate the Signature Parameters a Signing Session is created and a sessionld and security
code is returned to the Broker.

Step 3: Present document and security code to end user.
When presenting the document for the end user to read and sign, the security code should be visi-
ble for the end user.

Step 4: Authenticate end user and create OIOSAML Assertion.
When the end user has agreed to sign the document the end user must be authenticated and an
OIOSAML Assertion created. The Assertion must be unencrypted but signed.

Side 8 af41

Step 5: Issue cetrtificate.
Based on the OIOSAML Assertion, a short term signing certificate is issued using the Signing API
and a SAD SAML Assertion is returned.

The issued certificate and corresponding private key is kept securely at the NemLog-in backend
and after the signing is done, the private key is deleted. This ensures that a given certificate can
only be used to sign a document once.

Step 6: Calculate signature value.
Based on the response values returned when issuing the signing certificate, the raw signature
value is then calculated by the QSCD using the signer-forwarder API.

Step 7: Create PAJES/XAJES LTV signature.
The raw signature value is then used to create the LTV signature. When creating the LTV signature
the Signing AP1 will perform revocation checks on all certificates used during the signing process.

For PAJES signatures, the signature AdES object s returned alongside a list of certificates used in
the signing process and revocation information. The placeholder signature AdES object created by
the SignSDK must then be replaced with the signature AJES object in the PDF document. Certifi-
cate and revocation dictionaries must also be added to the PDF documert.

For XAdES signatures a base64 encoded string is returned which must be used when preparing
the LTA signature.

Step 8: Create PAJES/XAJES LTA signature.
In order to create the final LTA signature, the broker must calculate the document digest to be used
when creating the archive timestamp.

For PAJES signatures, this requires a placeholder timestamp dictionary to be added to the PDF
and then the digest value to be calculated over the bytes ranges covering the document, LTV sig-
nature dictionary, certificate and revocation dictionaries. The digestis then sent to the Signing API
and the archieve time stamp is created. The placeholder timestamp dictionary in the PDF docu-
ment must then be replaced by the timestamp returned by the Signing API.

For XAdES signatures a digest must be calculated over the value of the SignText elementin the
XML, postfixed with the base64-decoded value returned by the Signing APl in the previous step.
The XMLDSig signature element created by the SignSDK must then be replaced by the signature
element returned by the Signing API.

Step 9: Validate Signature
When the document has been signed, the Broker must verify that the document has been signed
by the expected end user.

Side 9 af41

5 Broker Example Code

SignSDKJava contains an example web application, nemlogin-broker-mock, which illustrates how Bro-
kers may use the SignSDK to generate a Signing Payload and how to subsequently call the back-end
NemLog-In Signing APl involved in the generating a signed document.

B Broker Signing Mock Home

Signing of petersen2017120113.pdf as PAdES Back

validating signing payload:
signatureParameters: eyJ4NWMi01siTUlJR1BqQENCUZFnQXdIQKFNSUVYT24XVURDE!
Nir kirsebaertrezerne blomstrer dtbs: JVBERIEXLJQKIFDk/NSKMSAWIGT1ag08PAOVVHLWESAVY2FEYIXVIHOVVEVYC21

Called Signing API -» begin-signature-flow. Result:
Farfattarbiografl (32 nId: meek4Kal1AFCI-WUEDFKOFIKPKS
securityCode: BEWYWE
dtbssignedinfobigest: z100kaskaijmyabeaubaknjvlT+HdEqo3mNbyDulb7m=
dtbssignedInfobigestAlgorithm: 2.16.848.1.101.3.4.2.1

Parsing signature parameters:
{"dtbspigestalgorithm™:"SHA-256" , "signatureFormat™: "PAdES" , "entityTD”

Broker TODO:
validate flowType
validate DTBS digest algorithm
validate stated DTBS digest against computed digest
validate stated signed Info digest against computed dipest

Initialized viewer

Broker TODO:
Implement Broker SAML IdP sign-in

Awaiting simulated Broker IdP sign-in

Simulated Broker IdP sign-in. Result:
samlissertion: PD94bkugdmvyc2lvbjeiMsawrislbaivZGluZ76iVVRGLTZ1PZ48C2H

Called Signing APT -»> issue-certificate. Result:
digestToBes: 37783fc7bf1317bfa7506f0371a57749b
sad: PDIAbWWECDEVYC21vbJO1MSAWTiB1baNyZGluZzeldXRmLTE

called Cryptomathic Signer Forwarder API. Result:
signaturevalue: MEYCIQDZKQWIAmhUu1oqP+sMBTUSbC2X8881TMETb j6531xn)Thal

called Signing APT -»> create-pades-1tv. Result:
emsSignedbata: MITjzgYIKoZ ThvcNAQCCOTTfvZCCT7SCAQEXDTANBE] ghkaB7OMEAH
certificates: 6 certificates

The Broker Signing Mock applications handles all Signer's Document formats (PDF, XML, HTML,
TEXT) and Signature Formats (PAdES and XAdES) and performs all the back-end API calls needed
to sign a document.

However, the code is not for production usage, and the task of converting the DTBS (Data To Be
Signed) generated by SignSDK into the final signed document, using data obtained by calling the
NemLog-In Signing AP, is left to the Broker, in accordance with the specification of the following
chapters.

6 BrokerIntegration —details

This section contains a more in-depth explanation of the steps required to create an AJES LTA signa-
ture. The process has been divided into three parts:

Side 10 af41

1. Common Steps. With details of the first six steps, which are identical for both PAJES and XA-
dES signatures

2. PAdES Signature. The final steps required to create PAJES Signatures.

3. XAdES Signature. The final steps required to create XAdES Signatures.

6.1 Common Steps

6.1.1 Step 1: Prepare Signing Payload

Before any document can be signed, the Signing Payload consisting of Signature Parameters and
Data To Be Signed (DTBS) must be initialized using the SignSDK. Please refer to “18 Signing Formats
and Data Models” and [NL-SP-IMPL] chapter 3 & 4 for details.

The JWS-sealed Signature Parameters contain the initial information required for the NemLog-in Sign-
ing backend to ensure that the signing request originates from a trusted broker and the integrity of the
DTBS is intact. The Signature Parameters must contain the entity ID provisioned for the Broker using
the NemLog-In Administration Component, and the parameters must be signed using the Brokers VO-
CES certificate and registered in NemLog-in.

The DTBS created by the SignSDK contains a placeholder signature elements that must be replaced
as part of the signature flow. Please note that the DTBS is never sent to the NemLog-in backend.

For PAJES signatures a placeholder Signature Dictionary is added to the PDF. This must be updated
by the Broker with the real AdES signature during the signing process. Example placeholder Signature
Dictionary generated by SignSDK:

<<

/Type /Sig

/Filter /Adobe.PPKLite
/SubFilter /ETSI.CAdES.detached
/Name (NemLog-In Signing SDK)
/Reference [24 0 R]

/M (D:20200710105856+02'00")

/Contents <0000000000000.....0000000000000>
/ByteRange [0 7602 40372 512]
>>

For XAdES the SignedDocument element contains a preliminary XMLDSig element that will be ex-
tended by the NemLog-in backend during the signing process. The example XMLDsig signature ele-
ment below is reproduced in a non-canonicalized format for increased legibility:

<ds:Signature Id="id-caaa8398-b576-4515-81bf-59030£f476bb4">

Side 11 af41

<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml -exc-cl4n#"/>

<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2001/04/xmldsig-moref#ecdsa-sha256"/>

<ds:Reference Id="r-id-caaa8398-b576-4515-81bf-59030f476bb4-1"
URI="#id-b09clf7a-74d8-49ed-bc91-b41bf0824673"
Type="http://dk.gov.certifikat/nemlogin#SignText">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cldn"/>
</ds:Transforms>

<ds:DigestMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>

<ds:DigestValue>
T+7K+dtyvTNjbg jDBcUpRswbDXBATYWAd/ tEX1kuRZQ=
</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>

</ds:Signature>

6.1.2 Step 2: Create Sighing Session
A Signing Sessionis created by calling the Signing API REST operation begin-signature-flow.
Input to this operation is the JWS-sealed Signature Parameters created by the SignSDK.

The NemLog-in backend will validate Signature Parameters using the VOCES certificate and verify
that the VOCES certificate is associated to a Broker.

When the NemLog-in backend has validated the Signature Parameters, a signing session is created
and a sessionld is returned to the Broker. The sessionld must be provided in a http header in all sub-
sequent calls to the NemLog-in backend.

Furthermore, a security code is returned and is provided as a mean to let end users identity their sign-
ing session during the signing process. The security code should be visible for the Signer when pre-
sented with the document to be signed, on the login screen etc.

A mean to ensure the document to be signed matches the document pre-signed by the SignSDK is
also returned by begin-signature-flowinthe form of the Base64-encoded dtbsSignedInfo-
Digest and dtbsSignedInfoDigestAlgorithm. The Broker client should recaclutate the DTBS

digest using the stated algorithm and compare to the returned digest:
e ForPAdES, the DTBS digest should be computed based on the ByteRange included in the
Signature Dictionary added by SignSDK.

Side 12 af41

e For XAdES, the DTBS digest should be computed based on the extracted and canonicalized
SignText element.
If the stated and computed digests do not match, then the document shown to the end user does not
match the document pre-signed by the SignSDK and the signing flow must be aborted.

6.1.3 Step 3: Present document and security code to end user
When presenting the document to sign to the end user, the security code should also be shown. This
is to help the Signer identify their signing session during all steps.

It is the Broker’s responsibility to ensure that what is presented to the Signer is also the content signed
by the Signer. If e.g. a XLST transformation is used when presenting a XML document, it's the bro-
kers responsibility to ensure all data in the XML document is visible after transformation.

6.1.4 Step 4: Authenticate end user and create OIOSAML Assertion

When the Signer is ready to sign the document, the user must be authenticated using the Broker IdP.
The SAML Assertion created by the IdP must adhere to the OIOSAML requirements specified in
[OIOSAML] with the additional requirements stated in section ‘8 SAML Integration’. Furthermore, the
Assertion must be unencrypted but be signed using the Brokers VOCES provisioned to the Sign-
ingComponent.

For more details of the authentication and SAML Assertion requirements see ‘8 SAML Integration’

Note that if the SAML Assertion states the Persistence Level as Global, explicit consent must be given
by the signer, in order to comply with privacy regulations.

When presenting the Signer with the login, the security code identifying the signing session should be
visible to the Signer.

6.1.5 Step 5: Issue Certificate

Based on the information in the OIOSAML Assertion, a short term certificate will be issued to the
Signer. The certificate is created by calling the Signing APIREST operation i ssue-certificate

with the OIOSAML Assertion as input. The issued certificate is kept securely on the NemLog-in Sign-
ing backend, and the private key is deleted after the signature session has been finalized, or when the
signing sessiontimeout is reached.

When issuing the signing certificate the NemLog-in Signing backend will also perform SAD exchange
with the QSCD and return the digestToBeSigned and the SAD SAML assertion required to authen-

ticate with the QSCD in the next step.

6.1.6 Step 6: Calculate signature value

To calculate the signature value — please read about the SAP protocol enableling in 12.4.2 SAP Proto-
col to be able to calculate the signature value.

Side 13 af41

After the signature value has been calculated the remaining signing process for PAJES and XAdES
will be described separately in the following sections.

6.2 PAdES Signature

To create a PAJES signature, the DTBS generated by the SignSDK must be extended with data re-
turned from the NemLog-in backend Signing APl and Signer forwarder API.

The examples do not contain all the implementation details required to create a valid PDF document
containing a LTA signature. The Broker is excepted to have in-depth knowledge about the PDF speci-
fication and to know the additional elements (xref, trailer, root catalog, etc.) required also to be added
and/or updated when adding the mentioned objects to a PDF document.

6.2.1 Step 7: Create PAJES LTV sighature

When calling the Signing API REST operation create-pades-1tv with the signature value calcu-
lated in the previous step, the final CMS Signed Data containing a signature adhering to the LTV-pro-
file is returned alongside the certificates and OCSP revocation information.

The hex-encoded CMS Signed Data shall replace the Content of the placeholder si g dictionary cre-
ated by the SignSDK when initializing the document to be signed. The replacement sig Content must
be padded to the exact same length as the placeholder sig content (green below).

<<

/Type /Sig

/Filter /Adobe.PPKLite

/SubFilter /ETSI.CAdES.detached

/Name (NemLog-In Signing SDK)

/Reference [24 0 R]

/M (D:20200710105856+02'00")

/Contents <308223eb06092.....0000000000000>
/ByteRange [0 7602 40372 512]

>>

Furthermore, the PDF must be incrementally updated to include the other PAAES LTV artifacts. This
entails adding an updated root catalog dictionary containing the certificates and revocation information
must also be added to the PDF by the broker.

<<

/Type /Catalog

Side 14 af41

/Version /1.7

/Pages 2 0 R

/Metadata 3 0 R

/MarkInfo 4 0 R

/Lang (EN-US)

/ViewerPreferences 5 0 R
/OutputIntents [6 0 R]

/Perms 21 0 R

/AcroForm <<

/Fields [22 0 R]

/SigFlags 3

>>

/DSS 26 0 R

>>

endobj

26 0 obj

<<

/OCSPs [27 0 R 28 0 R 29 0 R 30 0 R]
/Certs [31 0 R 32 0 R33 0R 34 0R350R 36 0R]
>>

Endobj

The referenced objects containing the actual certificates and OSCP revocation information has been
omitted here. Please refer to [PAJES] and [PDF] for details.

6.2.2 Step 8: Create PAJES LTA signature

In order to prepare the final PAJES LTA signature, the PDF must again be incrementally extended
with a PAJES LTA document timestamp. The updated root catalog should add additional dictionaries,
including a placeholder DocTime St amp dictionary. Example:

<<

/Type /Catalog

/Version /1.7

/Pages 2 0 R

/Metadata 3 0 R
/MarkInfo 4 0 R

/Lang (EN-US)
/ViewerPreferences 5 0 R

/OutputIntents [6 0 R]

Side 15af41

/Perms 21 0 R
/AcroForm <<

/Fields [22 0 R 37 0 R]
/SigFlags 3

>>
/DSS 26 0 R
>>

endojb

37 0 obj

<<

/FT /Sig

/Type /Annot

/Subtype /Widget

/F 132

/T (Signature2)

/V 38 0 R

/P 8 0 R

/Rect [0.0 0.0 0.0 0.0]
>>

endobj

38 0 obj

<<

/Type /DocTimeStamp
/Filter /Adobe.PPKLite
/SubFilter /ETSI.RFC3161

/Contents <00000000000000000000000000.>
/ByteRange [0 61685 94455 314]

>>

endobj

The ByteRange must cover the entire document except the content of the DocTime Stamp Contents
element (in green). The Contents value will be replaced by the real TimeStamp AJES at a later

stage.

Afterwards, a digest of the ByteRange-defiend part of the document must be calculated using the di-
gest algorithm specified in [NL-SIG-PROFILE]

The digestis inputto the Signing APl REST operation create-pades—-1ta which returns the time
stamp AdES needs to complete the PAJES LTA signature.

Side 16 af41

The broker mustreplacethe Contents of the placeholder DocTimeStamp with the HEX-encoded

time stamp returned by the NemLog-in Signing backend, padded to the exact length of the placeholder
value.

The end result is a PAJES LTA level signature signed using a short term certicate issued to the end
entity, specified in the SAML Assertion.

6.2.3 Step 9: Validate Signature

When the document has been signed, the Broker must verify that the document has been signed by
the expected end user.

6.3 XAdES Signature

When creating a XAdES signature the NemLog-in Signing backend will extend the preliminary XMLD-
Sig signature created by the SignSDK and return the complete signature to the broker in the final step.

6.3.1 Step 7: Create XAdES LTV signature

When calling the Signing API REST operation create-xades-1tv with the signature value calcu-
lated in the previous step, the NemLog-in Signing backend will update the XMLDSig signature re-
ceived in the Signature Parameters, and return a Base64-encoded string containing the canonicalized
value of most of the xml elements required to create the <SignatureTimeStamp> in the next step.

6.3.2 Step 8: Create XAdES LTA signature
Since, for privacy reasons, the <signText> element containing the documentto be signed is never

sent to the NemLog-in Signing backend, the broker must calculate the digest required to create the
<SignatureTimeStamp>.

The response value returned when calling create-xades-1tv in the previous step must be Base64-
decoded and postfixed to the value of of the <SignText> element so the end result consists of:

<SignText> +
<SignedProperties> +
<SignedInfo> +
<SignatureValue> +
<keyInfo> +
<SignatureTimeStamp> +
<CertificateValues> +

<RevocationValues>

The string must then be canocalized and a digest calculated. The digestis used as input to the Sign-
ing API REST operation create-xades-1ta. The digest algorithm and canocalization method is de-

fined in [NL-SIG-PROFILE].

Side 17 af41

The NemLog-in Signing backend creates the document time stamp and makes the final XMLDSig ele-
ment. The Base64-encoded XMLDSig element returned by the create-xades-1ta operation must
be decoded. Then the preliminary XMLDSig Signature element added to the XAdES document by
SignSDK must be replaced with the decoded XMLDSig element.

This finalizes the XAdES LTA signing process.

6.3.3 Step 9: Validate Signature
When the document has been signed, the Broker must verify that the document has been signed by
the expected end user.

7 Signing Formats and Data Models

The Signing Formats and Data Models are described in details in [NL-SP-IMPL]. The referenced docu-
ment is focused on the requirements related to NemLog-in Service Providers. In this section the differ-
ences in the requirements related to Brokers will be described as a supplement to [NL-SP-IMPL]. The

Service Providers using the Broker cannot use the SignSDK as the Signing Paylod must be signed by
the Broker.

7.1 Signature Parameters

The Signature Parameters is used to control the document signing, and must be provided, by the Bro-
ker, as input to the SignSDK when producing a signing payload.

Signature Parameters listed below are mandatory.

Parameter Value Description

version 1 Signature Parameter version
Defaultsto 1

flowType "ServiceProvider’/’Broker” Can only be “Broker” in this context.

entitylD URI A Broker-specific entity ID provisioned
using the NemLog-In Administration
Component.

documentFormat "TEXT/"HTML"/’"PDF”/”XML” | Signer's Document format (TEXT,

HTML, XML, PDF)

sighatureFormat "XAdES’/"PAdJES” The type of the signed document "XA-
dES-B-LTA” or "PAJES-B-LTA”

Signature Parameters listed below are not supported for Brokers and will result in a validation error if
specified.

Parameter Value Description

Side 18 af41

referenceText N/A

minAge N/A

preferredLanguage N/A

signerSubjectNamelD N/A

ssnPersistencelLevel N/A Brokers must specify this in the SAML
Assertion

anonymizeSigner N/A Brokers must specify this in the SAML
Assertion

acceptedCertificatePoli- | N/A Brokers must specify this in the SAML

cies Assertion

7.2 Signing Payload

For Brokers the Signing Payload must be Signed by a VOCES keypair provisioned by the Broker us-
ing the Adminstration Client.

7.3 Signing Client Error

This section in [NL-SP-IMPL] is not directly applicable for Brokers as they implement their own Signing
Client, however, the SigningClientError and DetailedSigningClientError models also de-

fines the data structure used for Signing API errors.

8 SAML Integration

Upon authenticating a Signer, the Broker IdP must produce a valid OIOSAML 3 Assertion. The short
term certificate issued when calling i ssue-certificate isissued based on the information re-

ceived in the SAML Assertion.

Side 19 af41

cmp Broker-SP integratiun_J

_ Broker protocol __ _
== |se =»
1

=< Use ==
1

]
Y s i
MitiD protocol

Broker &_] 2] S i
Signer Forwarder |—{ Broker Signing Broker (ldP} |————-— -
Pi Client | | =70z =

Toxy fen — NemiD protocol
] T T == |Se ==
1 1] r———
Cryptomathic protocol REST API QIOSAML

<< |58 ==
1

< Use ==
'

-

010 SAML -

2 |ge ==

|
1
IdentityService AP|

< lUSe B
1

|
|
|
—

The details of how a Broker authenticate their SPsis up to the Broker to design and implement.

The actions of the Broker (IdP) depend on the type of credentials:

e Local credentials. When using local credentials, the Broker integrates with the Log-in component to
perform the authentication. The resulting OIOSAML Assertion must be modified if needed to com-
ply to the requirements in this chapter.

e Personal MitID or NemID credentials. When using MitID or NemID credentials, the Broker inte-
grates directly with MitID or NemID.

o Employee MitID or NemID credentials. When creating signature or seals using MitID/NemID em-
ployee credentials, the Broker must query EIA (the IdentityService) accordingly.

According to this integration model, it is the Broker who issues the SAML Assertion used when com-
municating with the Signing API, independent of the end user’s choice of credentials (MitID, NemID or
local). The SAML Assertion sent to the NemLog-in backend must always be signed using the Brokers
VOCES certificate provisioned to the Signing Component.

Side 20 af41

8.1 SAML Assertion requirements

The NemLog-in backend requires a number of attributes to be presentin the SAML Assertion created
by the Broker. Some of these attributes are optional in the OIOSAML 3 profile but are mandatory in a
signing context.

The short term certificate used for signing is issued based on the on the information contained in the
SAML Assertion.

This section describes the requirements for the SAML Assertions issued by the Broker. The SAML As-
sertion must always be signed using the Brokers VOCES certificate in order for the NemLog-in
backend to verify it is issued by a trusted party. Furthermore, the SAML Assertion must not be en-
crypted.

The Broker must ensure that all mandatory attributes in the OIOSAML 3 profile, not mentioned below,
are also present in the SAML Assertion.

8.2 Subject

Subject denotes theidentity of the Signer (for person and employee signatures) or approver (for seals)

8.2.1 NamelD

The Broker must use the value of their own persistent SubjectName ID for employees (when signing)
or approving employee (when creating a seal). When the Broker creates a seal, the Broker must verify
employee authorization using the EIA Identity Service.

E.g.

<saml:NameID SPNameQualifier="https://saml.some-broker.dk"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">
https://data.gov.dk/model/core/eid/professional/uuid/123e4567-e89b-12d3-a456-426655440000

</saml :NameID>

For Personal signatures the Broker must use the CprUuid as persistent id. This is the same value as
CertificateHolderIdentifier (without the ‘person’ prefix) e.g:

<saml:NameID SPNameQualifier="https://saml.some-broker.dk"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">
https://data.gov.dk/model/core/eid/person/uuid/123e4567-e89b-12d3-a456-426655440000

</saml :NameID>

8.2.2 SubjectConfirmation
SubjectConfirmation is mandatory and is therefore always specified cf. OIOSAML 3.0. The Bro-
ker must specify NotOnOrAfter, which is validated by the NemLog-in backend. InResponseTo

Side 21 af41

must always be specified and the value must be the SessionId created when calling Signing API
begin-sign-flow e.g.

<saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
<saml2:SubjectConfirmationData
InResponseTo="xYyuqxDDkJ2yW30q9gWhmTGuluM"
NotOnOrAfter="2020-09-02711:57:05.8892"
Recipient=" >

</saml2:SubjectConfirmation>

8.3 Conditions
The Conditions element must contain a AudienceRestriction element.

8.3.1 AudienceRestriction
The AudienceRestriction element is specified as the Signing Component’s EntityID:

Environment Value

Customer Test Integration

Production https://saml.signer-prod-nemlog-in.dk

E.g.

<saml:AudienceRestriction>
<saml:Audience>https://saml.signer-cti.nemlog-in.dk</saml:Audience>

</saml:AudienceRestriction>

8.4 AttributeStatement

The SAML assertion must contain an Att ributeStatement element containing a series of attrib-
utes used when the short term signing certificate is issued by the NemLog-in Signing backend.

The attributes will be part of the certificate’s subjectDN for the five different Signer-types:

4. Person

5. Employee

6. Anonymized person

7. Anonymized employee
8. Seal

Unless explicitly stated, the attribute is mandatory.

8.4.1 SpecVersion
The specVersion attribute value mustbe "010-SAML-3. 0”.

Side 22 af41

https://signing.nemlog-in.dk/signing/auth/saml/assertion-consumer%22/
https://saml.signer-cti-nemlog-in.dk/

<saml:Attribute Name="https://data.gov.dk/model/core/specVersion"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml :AttributeValue>0I0-SAML-3.0</saml2:AttributeValue>
</saml:Attribute>

8.42 Loa
The loa attribute value must be either ‘Substantial’ or ‘High’ as pr. [NSIS] requirement.

<saml:Attribute Name="https://data.gov.dk/concept/core/nsis/loa"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml :AttributeValue>Substantial</saml2:AttributeValue>
</saml:Attribute>

8.4.3 CertificatePolicyQualifier
The certificatePolicyQualifier attribute value must be one of:
o Person (for Personal Signature)

o Employee (for Employee Signature)
e Organization (for Seal)

<saml:Attribute Name="https://data.gov.dk/model/core/signing/certificatePolicyQualifier"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml:AttributeValue>Person</saml2:AttributeValue>

</saml:Attribute>

Based on the policy, the signature type will be determined and a short term certicate will be issued
based on the type.

8.4.4 AnonymizedSigner
The anonymizedSigner attribute value must be either ‘t rue’ or ‘false’

<saml:Attribute Name="https://data.gov.dk/model/core/signing/anonymizedSigner"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml :AttributeValue>false</saml2:AttributeValue>
</saml:Attribute>

If true, the certificate will be anonymized. For anynomized certificates, the SubjectDN element’s cn
and pseudonym will have the value ‘Pseudonym’. Can only be true in conjunction with Person or Em-
ployee certificate policy.

Setting anonymizedSigner to true with the certificatePolicyldentifier set to “Organization” will resultin
an error being thrown by the Signing API.

Side 23 af41

8.4.5 CertificateHolderldentifier

Global identifier for certificate holder. The certificate issued is associated to this identifier in CA to al-
low revocations to be performed given this identifier. If CertificatePolicy is “Person” the Holderldentifier
is equal to CPR-UUID for signer, if CerticicatePolicy is “Employeee” or “Organization”, the Holderlden-
tifier is equal to the global identifier for the corporate identity provided by NemLog-in Erhverv (EIA).

Values have the syntax <lowercase(certificatePolicy)>:<UUID>, see example.

<saml:Attribute Name="https://data.gov.dk/model/core/signing/certificateHolderIdentifier"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml:AttributeValue>person:22222222-ae53-443f-b7c¢6-01b94fbf7a51</saml2 :AttributeValue>
</saml:Attribute>

8.4.6 CertificateSSNPersistencelLevel
The certificateSSNPersistencelevel attribute value must be either of ‘Session’ or ‘Global'.

<saml:Attribute Name="https://data.gov.dk/model/core/signing/certificateSSNPersistenceLevel”
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml:AttributeValue>Session</saml2:AttributeValue>

</saml:Attribute>

The attribute is used to determine the persistence level for the UUID specified in the subjectSerial-
Number of the short term certificate.

A value of Session instructs the NemLog-in Signing backend to create a session-specific UUID to be
used as subjectSerialNumber. Access to Lookup Service is required in order to subsequently identity
the entity associated with the given session UUID.

A value of Global will use the global certificateHolderldentifier as subjectSerialNumber. When using
global UUIDs, explicit consent from the end entity is required to be GDPR compliant.

8.4.7 Certificate subjectDN attributes

The subjectDN of the short term certificate is created based on the SAML Asserrtion attribute values
specified in the table below.

Whether the attribute must be present in the SAML Assertion depends on the Signer-type.

Mandatory SAML Assertion attributes for each signer-type

Attribute Person Employee | Anonymized | Anonymized | Seal
(friendly name) person employee | (Organization)

Side 24 af41

FirstName X X

LastName X X

CommonName “Pseudonym” | “Pseudonym” X*
OrgName X X X
CVR X X X**

* Certificate CommonName is taken from SAML Assertion
** CVR prefixes according to certificate profile

FirstName
<saml:Attribute Name="https://data.gov.dk/model/core/eid/firstName"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

<saml:AttributeValue>Julie</saml2:AttributeValue>
</saml:Attribute>

LastName

<saml:Attribute Name="https://data.gov.dk/model/core/eid/lastName"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml:AttributeValue>Sgrensen</saml2:Attributevalue>

</saml:Attribute>

CommonName

For Person and Employee, cn of the certificate Subject DN will be the concatenated value of first-
Name and lastName.

If the anonymizedSigner attribute is true, however, then commonName must contain the value “Pseu-
donym” and the firstName and lastName attributes must be unspecified.

For seals, commonName must be the appointed name of the organization identity.

<saml:Attribute Name="https://data.gov.dk/model/core/signing/certificateCommonName"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml :AttributeValue>Julie Sgrensen</saml2:AttributeValue>
</saml:Attribute>

OrgName

<saml:Attribute Name=" https://data.gov.dk/model/core/eid/professional/orgName"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml:AttributeValue>Bennys Bagelbageri</saml2:AttributeValue>
</saml:Attribute>

CVR

Side 25 af41

https://data.gov.dk/model/core/signing/certificateCommonName

<saml:Attribute Name=" https://data.gov.dk/model/core/eid/professional/cvr"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
<saml :AttributeValue>20301823</saml2:AttributeValue>
</saml:Attribute>

9 Logging

It is the responsibility of the Broker to store and provide the information needed to prove the correct-
ness of a signature or an authentication at a later point of time, e.g. due to a dispute or fraud case.

The signed document from each signing operation must be stored by the Broker or SP. The user’s
certificate (which includes a UUID to identifify the signer), the time stamp etc. are included in signed
documents. Brokers are encouraged to consider to store other relevant information like time stamp,
client IP number, user agent, correlation id and similar information subject to regulative requirements.

All requests to the Signing and Signer forwarder REST APIs will be logged by the NemLog-in Signing
backend. The Broker must add a “CorrelationIdManager.CorrelationId” HTTP header con-
taining a caller-selected value with a UUID v4 format when calling the Signing API, and all request will
be logged with that value. This makes it possible to trace all requests for a given signing session.

Note that NemLog-in never handles the actual documents to be signed and therefore does not store
the signed documents.

Brokers are encouraged to use the same correlationld internally and when interacting with the Nem-
Log-in Signing backend as this will aid the troubleshooting process in case of errors.

10 Responsecodes and error handling

When interacting with the Signing and Signer forwarder REST APlIs the following HTTP response
codes may be returned.

Code Description
200 Success
400 Internal error. When an error occurs the Broker must cancel the signing,

remedy the error and create a new signing session to sign the document

401 Unauthorized. Will be returned if the NemLog-in Signing backend fails to
recognize the Brokers VOCES certificate used to seal the Signature Pa-
rameters. No signing session can be created while this error occours

Side 26 af41

When an error occurs a JSON object describing the error will be returned. See [NL-SP-IMPL] Appen-
dix B for a full list of error codes.

"httpStatusCode": O,
"timestamp": "string",
"message": "string",
"details": [
{
"errorCode": "string",

"errorMessage": "string"

If the error can be rectified by the Broker an error message with details of the error is returned.

11 Security Guidelines

The security advice and best-practice in [NL-SP-IMPL] Chapter 6 Security Guidelines, is also recom-
mended for Brokers.

12 Appendix—Broker API

Signing Frontend Service defines atwo REST APIs:
e Signing API
e Signer Forwarder API

Required parameters and model fields are tagged with *.

12.1.1 Authentication
Accessto both REST APIs require TLS.

After a signature flow has been initialized the SigningAPI can only be called using a valid Session ID.
The Sessionld is created when the Broker invokes begin-signature-flow with valid signature pa-
rameters signed by the Broker's VOCES certificate provisioned to the Signing Component. All subse-
guent calls must contain the Sessionld as a HTTP header.

Side 27 af41

If the Brokers VOCES certificate is unknown to the Nemlog-in backend a session will not be created.

12.1.2 Common Request Parameters

All REST API endpoints accepts the following correlation ID header:

Name In Type

Description

CorrelationldManager header string
.Correlationld*

The Correlation
log records gen

IDis defined by the caller and will be in all
erated while signing.

The value must have a UUID v4 format, but there isno re-

quirementthat itis unique.
12.2 Signing API
12.2.1 begin-signature-flow
Initializes the signature flow by
Request
POST https://<uri>/signing/begin-signature-flow
Request Parameters
Name In Type Description
Accept* header string “application/json”
Content-type* header string “application/json”
signatureParameters* body BeginSignhatureFlow- Signature parameters containing the
Request documentto be signed and other pa-
rameters required for signing.
The JWSsigned stringis generated by
SignSDK
Response
Code Content-Type Description
Type
200 OK “application/json”

BeginSignatureFlowResponse

400 Bad Request

Signature Parameters validation failure

401 Unauthorized

Not authorized to performsigning.

12.2.2 issue-certificate
Request

POST https://<uri>/signing/issue-certificate

Request Parameters

Side 28 af41

Name In Type Description

Accept* header string “application/json”
Content-type* header string “application/json”
X-DIGST-Signing-Sessionld* header string Sessionld returned in BeginSigna-
tureFlowResponse
body IssueCertificateRequest
Response
Code Content-Type Description
Type
200 OK “application/json”

IssueCertificateResponse

400 Bad Request

401 Unauthorized Not authorized to performsigning. See
12.1.1 Authentication

12.2.3 create-pades-Itv

Request

POST https://<uri>/signing/create-pades-Itv

Request Parameters
Name In Type Description
Accept* header string “application/json”
Content-type* header string “application/json”
X-DIGST-Signing-Ses- header string Sessionld returned in BeginSigna-
sionld* tureFlowResponse

body CreatePadesLtvRequest

Response

Code Content-Type Description
Type

200 OK “application/json”

CreatePadesLtvResponse

400 Bad Request

401 Unauthorized Not authorized to performsigning. See
12.1.1 Authentication

12.2.4 create-pades-lta
Request
POST https://<uri>/signing/create-pades-Ita

Side 29 af41

Request Parameters

Name In Type Description
Accept* header string “application/json”
Content-type* header string “application/json”
X-DIGST-Signing-Ses- header string Sessionld returned in BeginSignature-
sionld* FlowResponse

body CreatPadesLtaResponse

Response
Code Content-Type Description
Type
200 OK “application/json”

CreatePadesLtaResponse

400 Bad Request

401 Unauthorized

Not authorized to performsigning. See
12.1.1 Authentication

12.2.5 create-xades-Itv

Request
POST
Request Parameters

https://<uri>/signing/create-xades-Itv

Name In Type Description
Accept* header string “application/json”
Content-type* header string “application/json”
X-DIGST-Signing-Ses- header string Sessionld returned in BeginSigna-
sionld* tureFlowResponse

body CreateXadesLtvRequest

Response
Code Content-Type Description
Type
200 OK “application/json”

CreateXadesLtvReponse

400 Bad Request

401 Unauthorized

Not authorized to performsigning. See
12.1.1 Authentication

12.2.6 create-xades-lta

Request

Side 30 af41

POST https://<uri>/signing/create-xades-Ita
Request Parameters

Name In Type Description

Accept* header string “application/json”

Content-type* header string “application/json”
X-DIGST-Signing-Ses- header string Sessionld returned in BeginSignature-
sionld* FlowResponse

body CreateXadesLtaRequest

Response
Code Content-Type Description
Type
200 OK “application/json”

CreateXadesLtaResponse

400 Bad Request

401 Unauthorized Not authorized to performsigning. See
12.1.1 Authentication

12.2.7 session-creation-key.js

Calling Signing frontend service provides the SCK for broker usage.

Request
POST https://<signer-frontend-service>/signing/session-creation-key.js
Response

Code Content-Type Description

200 OK application/javascript;charset=UTF-8

Response example
(sck)
sck.Details = {

Side 31 af41

}

} (Cryptomathic.namespace (

12.3 Signing API Models

12.3.1 BeginSignatureFlowRequest

Name Type

Description

signatureParameters string

JWS-encoded and signed Signature Parameters

12.3.2 BeginSignatureFlowResponse

Description

Security codeto use for end-user identification

A session ID forthe signingwork flow

Base64-encoded digest extracted fromthe dtbsSignedinfo
field ofthe signatureParamaters

This together with the dtbsSignedInfoDigestAlgorithm can be
used to verify that the document presented to the end user
corresponds to the documentinitialized by the SignSDK by
recalculating the digestvalue ofthe documentto be sighed

Name Type
securityCode* string
sessionld* string
dtbsSignedinfoDigest* string
dtbsSignedinfoDigestAlgo- string

rithm*

Digestalgorithm extracted fromthe dtbsSignedInfofield of
the signatureParameters

12.3.3 IssueCertificateRequest

Name Type

Description

samlAssertion* string

Base64 encoded OIOSAML assertion

12.3.4 IssueCertificateResponse

Description

Hex encoded documentdigestto be signed by the QSCD

Name Type
digestToBeSigned* string
sad* string

Base64 encoded QSCD SAD SAML assertion to be used
for authentication with the QSCD

12.3.5 CreatePadesLtvRequest

Name Type

Description

signatureValue* string

Base64 encoded signature value from the QSCD

Side 32 af41

12.3.6 CreatePadesLtvResponse

Name Type Description

cmsSignedData* string Base64 encoded AES CMS containing the signature.
The returned ADES must replace the placeholder ADES
added to the PDF documentby the SignSDK

certificates* array List of Base64 encoded x509 certificates to be included in
PDF documentwhen creating archieve timestamp

ocspResponses* array List of Base64 encoded OCSP ASN1 responses to bein-

cluded in PDF documentwhen creating archieve
timestamp

12.3.7 CreatePadeslLtaRequest

Name Type

Description

timeStampDigestValue* string

Base64 encoded byte array containingthe digestvalue to
time stamp

12.3.8 CreatePadeslLtaResponse

Name Type

Description

timeStamp* string

Base64 encoded AES CMS containing the time stamp.
The returned ADES must replace the placeholder
timestamp AdES added to the PDF document when cal-
culating the time stamp digestvalue.

12.3.9 CreateXadesLtvRequest

Name Type

Description

signatureValue* string

Base64 encoded signature value from the QSCD

12.3.10 CreateXadesLtvResponse

Name Type Description
archiveTimeStamplnitialCon- string Base64 encoded string with the canocalised concate-
tent* nated value of SignedProperties + SignedInfo + Signa-

tureValue + KeyInfo + SighatureTimeStamp + Certificat-
eValues + RevocationValues. This is to postfixed to the
SignTextelement. Thedigestvalue of thisis to used as
input for CreateXadesLtaRequest.

12.3.11 CreateXadesLtaRequest

Name Type

Description

timeStampDigestValue* String

Base64 encoded digestvalue of canocalised SignText +
SignedProperties + SignedInfo + SignatureValue + Key-

Info + SignatureTimeStamp + CertificateValues + Revo-

cationValues to time stamp

Side 33 af41

12.3.12 CreateXadesLtaResponse

Name Type Description

signature* String Base64 encoded xml signature element at CAdES level
LTA. Thesignature elementisto replacethe Signarure
element in the SignedDocument created by the SignSDK

12.4 Signer forwarder API

Signer Forwarder api is used together with QSCD SDK to calculate signature value (signer-forwarder)

12.4.1 signer-forwarder

REST endpoint uses to expose QSCD SAP protocol to Cryptomathic JavaScript User SDK. All calls
from the broker client is routed from Broker Signing Client -> Broker Signer Backend Proxy on Broker
backend -> Signer Forwarder API -> Signing backend -> QSCD to handle browser CORS issues.

The signer-forwarder does not support CORS! so the Broker Signing Client can not use the Signer
Forwarder API directly from the client, but must handle the signer-forward logic from a Signer For-
warder Proxy on the Broker backend.

Request
POST https://<uri>/signer-forwarder
Request Parameters
Name In Type Description
Accept* header string e
Content-type* header string “text/plain;charset=UTF-8"
sessionld* parameter string Contains the signing session ID from
begin-sign-flow.
correlationld parameter string CorrelationldManager.Correlationld
used to track QSCD logging
body Encrypted payloadto forwarder
Response
Code Content-Type Description
200 OK “x[x
Errorcode varies Cryptomathic forwarder errorcodes varies,
pleaserefer to Cryptomathic documenta-
tion.

' CORS : Cross-origin resource sharing see htips://fetch.spec.whatwg.org/

Side 34 af41

https://fetch.spec.whatwg.org/

12.4.2 SAP Protocol

When a Broker is implementing a signing client, they must use a qualified SAP protocol provider certi-
fied with ETSI EN 419-241-2 to be considered a valid qualified signer. Part of the protocol requirement

is that the signing is controlled from the client side all the way to the QSCD server.

In NL3 this has been implemented with Cry ptomathic Signer as a SAP API protocol provider that all
client must utilize to be a qualified signing client.

The underlying protocol used is called SAP API and is used in the Broker Client by including Crypto-
mathic Signer SDK and then calling a Broker Backend service that proxies calls to the signer-for-
warder referenced in 12.4.1 signer-forwarder.

Example of a Broker Cl

ient.

(Brol(erCIienL'-l:

SAP requests

Broker Backend v

NL3 DMZ

Broker Backend
proxy

SAP request is proxied ——m

Sessio

n Id + Corr. Id

Signing

ML3 App Zone

Signing

Frontend

Session Id + Corr. Id

Service

o | Cryptomathic

Forwarder

The reason the Broker Backend is proxing calls is to solve CORS issues between browser domains
(assuming the Broker Clientis running in another domain than signer-frontend service).

Implement the following steps in order to be able to enable the SAP Protocol.

Step

Description

1. Signer sdkin cli-
ent

Add signersdk.min.js to client, this is used to call the signer-forwarder. Can
be taken from Cryptomathic User SDK.

2. Add SCK

SCKis shortfor Session Creation Key and is used to establish a protocol to

the backend.

Side 35af41

This can be included from signing frontend service: https://<frontend-service>
/signing/session-creation-key. s

See [12.2.7 session-creation-key.js |

3. Call Issue Certifi-
cate

Implement “Issue Certificate” [6.1.5 Step 5: Issue Certificate] in broker cli-
ent and extract the field “sad” from response.

4. Initialize QSCD
API

Now the client should establish the SAP protocol by using Cryptomathic User
SDK.

To avoid CORS issues, the <Forwarderurl> used in the example below must
be proxied to the signing frontend via the Brokers own signer forwarder
proxy. The format of the request being proxied to the signing frontend is:
https://<frontend-service>/signer-forwarder?sessionld=<session-id>&correla-
tionld=<correlation-id>.

The <session-id> is the URI-encoded session ID retrieved in the call to
begin-signature-flow.

The optional <correlation-id> parameter is the URI-encoded correlation ID
used for logging purposes — please refer to chapter 9.

sdk =
(<Fowarder

sdk.initialize ()

Create Session

Create session with callback objects

sdk. createSession(resolve, reject, samlAssertion)

Important: It is very important that the SAD from [6.1.5 Step 5: Issue Certifi-
cate] is formatted before calling createSession!

Please read [15.1 Code example —formatting saml (sad) assertion]

Implement resolve

Example of calling userSDK sign

Convert digestToBeSigned from issue-certificate viaconvert-
StringToNumbers

messageHashToBeSigned = convertStringToNumbers (

)

Side 36 af41

Convert method:

convertStringToNumbers (values:
bytes = []
(c = c < values.
bytes.push (parselInt (values.substr (c

}

bytes

The call userSDK sign method

sdk.sign (keyEntry, callForwarderRequest.
solveSign, rejectSign)

Implement resolveSign, this will receive the signing response from QSCD

resolveSign = {

Client Javascript pseudo example:

<html>
<head>
<script type="text/javascript" src="https://<signing-client>/as-
s/signersdk.min.js"></script>
<script type="text/j script" src="https://<frontend-service>/sign-
ing/session-creation-key.js"></script>

<script type="application/javascript">
demoSigning () {

sessionld =

correlationId =

messageHashToBeSigned = [

forwarderURL =
+ sessionId + + correlationId

sdk = . . (forwarderURL

Side 37 af41

</script>
</head>
</html>

{

sdk.initialize ()

.log()

rejectLogOff = (errorType, message) {
. debug (+ message +

cleanup = QI
sdk.logoff (resolvelLogOff, rejectLogOff)
sdk. free ()

resolvelLogOff =
. debug (
cleanup ()

resolveSign = (signatureBytes) {
.info (+ signatureBytes +

rejectSign = (errorType, message) {
.error (
+ message +)
cleanup ()

resolve = (tokenList, policyList) {

. log()
aPolicy = policyList[0]

keyEntry = aPolicy. [0]
hashToSign = messageHashToBeSigned

. log()
sdk.sign (keyEntry, hashToSign, resolveSign, rejectSign)

sad =
samlAssertion = encodeSAMLAssertion (sad)

sdk.createSession (resolve, reject, samlAssertion)

(error) {
.error (+ error)

sdk. free ()

= demoSigning

Side 38 af41

The Broker Client must Implement [1],[2],[3].[4],[5] in the client to make this pseude example into a
real running client.

13 Appendix - Error API

Reference SP documentation

14 Appendix—Broker SAML Assertion

Example of a SAML Assertion consumed by the NemLog-in backend. The information received in the

SAML Assertion is used when issuing the short term signing certificate used to sign the document.

<?xml version encoding
< :Assertion xmlns:
ID
Issuelnstant
Version >
:Issuer Format
https://broker-entity-id
:Issuer>
:Subject>
< :NameID Format
SPNameQualifier
ff7db82f-d5e6-4377-ac62-ef22adacb134
</ :NameID>
< :SubjectConfirmation Method
< :SubjectConfirmationData InResponseTo
NotOnOrAfter
Recipient
</ :SubjectConfirmation>
:Subject>
:Conditions NotBefore NotOnOrAfter
< :AudienceRestriction>

< :Audience>https://signer.nemlog-in.dk</ :Audience>
</ :AudienceRestriction>

:Conditions>
:AuthnStatement AuthnInstant
SessionIndex
:AuthnContext>
< :AuthnContextClassRef>
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</ :AuthnContextClassRef>
</ :AuthnContext>
:AuthnStatement>
:AttributeStatement>
< :Attribute FriendlyName
Name
NameFormat
:AttributeValue>0IO-SAML-3.0</ :AttributeValue>
</ :Attribute>
< :Attribute FriendlyName
Name
NameFormat
< :AttributeValue>Substantial</ :AttributeValue>
</ :Attribute>
< :Attribute FriendlyName
Name
NameFormat
:AttributeValue>Employee</ :AttributeValue>

Side 39 af41

:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>Session</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat >
:AttributeValue>employee :ff7db82f-d5e6-4377-ac62-ef22adacb134</ :AttributevValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>Jane Fonda</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>Jane</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>Fonda</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>Three Mile Island</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>11111111</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>93</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat
:AttributeValue>false</ :AttributeValue>
:Attribute>
:Attribute FriendlyName
Name
NameFormat >
< :AttributeValue>U21nbiBkb2N1bWVudCBmcm9tIFVua25vd24gUlA=</ :AttributeValue>
</ :Attribute>
</ :AttributeStatement>
</ :Assertion>

15 Appendix — SAP API Utillities

15.1 Code example —formatting saml (sad) assertion

When a SAML Assertion (SAD) is received from issue-certificate, it must be base64 decoded and then
encoded as UTF8. The following JavaScript provides guidance in how to achieve this. The formatting
shall be conducted prior establishing a sessionwith

Side 40 af41

encodeSAMILAssertion (sad)

sdk. createSession(resolve, reject, samlAssertion)

EncodeSAMLASssertion function

encodeSAMIAssertion (assertion) {

toUTF8Array (str) {

utf8 = []

(i = i < str. it+) |
charcode str.charCodeAt (1)
(charcode <) utf8.push (charcode)

(charcode <) |

ut£8.push (| (charcode >> 0)

\ charcode &

rcode
\

(¢

(cha

ut£8 .push (
I (

| (

basetc4decode (data) {
.atob (data)

toUTF8Array (base64decode (assertion))

Side 41 af41

